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The Modeling of Chemical Phenomena Using Topological Indices

Dennis H. Rouvray

Department of Chemistry, University of Georgia, Athens, Georgia 30602, U.S.A.

Abstract

A class of graph invariants known today as topological indices are being

increasingly realized by chemists and others to be powerful tools in the description

of chemical phenomena. Topological indices generally characterize both the

size and shape of chemical species; in recent years a number of such indices

have been put forward which sensitively reflect the amount of branching present

in molecules. Chemists are thus able to model accurately the chemical behavior

of an extensvie range of chemical substances in all three thermodynamic states.

In discussing the manifold applications of topological indices to the description

of physicochemical properties, we present a survey of the progress to date in

this area, and point out some of the advantages and drawbacks of using topological

indices.

Introduction

Topological indices are scalar numerical descriptors that are now being

increasingly used by chemists and others for the characterization of molecular

species. Such indices, which should be more accurately referred to as

graph-theoretical indices, usually characterize both the size and shape of the

species to varying extents. By size in the present context is meant the volume

r
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occupied by a molecule in 3-space; shape on the other hand expresses the

distribution of the molecular volume in 3-space. Some indices reflect

predominantly the size of the molecule, e.g., the carbon number index, while

others, e.g. the Balaban centric index, are designed to characterize the shape.

The earliest indices were generally better descriptors of size than shape whereas

a number of the more recent indices provide a fairly sensitive characterization

of shape. There has thus been a growing tendency to develop indices which

are able to accurately express the shape of a molecule, and this has led to an

increased interest in the phenomenon of branching in molecular species and its

*' precise definition. Before discussing topological indices further, it will therefore

be necessary to say something on the current state of the art in characterizing

molecular branching.

We shall assume that all the molecular species of concern to us here can

be represented by means of an appropriate chemical graph; readers wishing to

know more on the theory of graphs are referred to introductory presentations

on the subject [1,21. For simplicity, we shall restrict our coverage mainly to

hydrocarbon molecules, and these will be represented by their hydrogen-suppressed

graph, i.e. only the carbon skeleton will be taken into consideration, a practice

commonly adopted in this field. Branching is said to occur in a chemical graph

whenever a vertex in the graph has a degree of three or greater; each vertex

of this type is referred to as a branching point. A rough measure of the extent

of branching present in a molecule is provided by the number of branching points

it contains. On this basis, the three alkane molecules 2-methyl heptane,

3-methyheptane, and 4-methyheptane, for instance, all display the same extent

of branching. Problems arise, however, when we wish to order such molecules

according to their physicochemical or other properties. Since they have the

same extent of branching, they cannot be ordered in terms of this measure;

*.\ .*-. * ~ ~ .~.%~ .%' ~% % % % ~ *~*1
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consequently, much effort has been expended on devising more precise measures

of molecular branching. To this end, use has been made of matrices, codes,

sequences, Young diagrams, polynomials, and graph invariants [3]. It is on the

latter means of characterizing branching that our main interest will be focused.

To determine the extent to which a given topological index reflects molecular

size vis-1-vis molecular shape, it is necessary to have at our disposal effective

measures of both of these parameters. The size of a molecule can be

comparatively easily computed from the hard sphere van der Waals' radii of the

various atoms it contains. Integration over all of the atoms yields the van der

Waals' envelope for the molecule in question as a reasonably reliable indicator

of size [4]. The shape of a molecule is much more difficult to assess, as meaningful

shape descriptors are difficult to devise. Frequently, the shape of a molecule

has been equated to the extent of branching present in the molecule. A simple

measure of this was advanced by Motoc et al. (51, who proposed that the extent

of branching in a molecule, B(G), be defined by the equation:

B(G) =n P + _SC (1)

where np is the number of branching points, and nSC is the number of side chains

in the chemical graph of the molecule. It is easy to show for tree graphs that

B(C) will have a minimum value of zero and a maximum value of (n - 2), where

n is the number of vertices in the chemical graph. It is therefore not untenable

to employ such simple measures of branching, for ultimately any definition of

branching must rest on an intuitive basis (3]. Because of this circumstance, the

use of sophistry in defining the concept of branching appears unlikely to lead

to a more viable definition.

.... ... ... , ... -o.. . .,. .. .. , .... . .. . ..... .;,, ... .,.... ... :.... .. .. .... .: .,:.../ , .::.,: ,.. .,..,.,_ , -,..
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The Uniqueness of Topological Indices

Much effort and ingenuity have gone into the endeavor to produce topological

indices that give unique characterizations of chemical species, i.e. indices that

will differ in value whenever they characterize two graphs which are not

isomorphic. To date, it has not been possible to construct a unique topological

index, and, because the problem is very hard, the focus of attention has now

shifted to the question whether such indices are theoretically possible. While

waiting for a resolution of this issue, chemists have been devoting considerable

time to the study of which indices are closest to being unique. For this purpose,

a parameter known as the mean isomer degeneracy, fml, was introduced by Bonchev

et al. [6]. This parameter is defined by the equation:

Nisomers/t, (2)

where Nisomers represents the number of chemical isomers for a given n which

possess nonisomorphic graphs, and t is the corresponding number of different

values assumed by the topological index. A variety of workers have determined

M values for alkane tree graphs [6-8]. Examples of nonisomorphic graph pairs

having identical index values are illustrated in Figure 1.

It is, of course, still quite possible to correlate molecular properties using

nonunique topological indices. In fact, an index that is unique is not necessarily

always the best descriptor to employ in structure-property correlations. This S.

is especially true whenever differing structures have closely similar properties.

The earliest topological index, usually known today as the carbon number index,

provides an instructive example of how far one can go with an index that is very

far from being unique. Although the carbon number index has been in existence

C,
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for over a century (91, it is only comparatively recently that it has been recognized

as a topological index. The carbon number index, nc, is defined simply as theI number of vertices in the hydrogen suppressed graph of the hydrocarbon molecule.

In early work the index was used to model the physicochemical properties of

alkane species, such as their boiling point and refractive index [101; in more recent

times the index has been used in the study of chromatographic retention times

[111, anesthetic potency [12], and carcinogenic behavior [13] among others. A

plot of nC against boiling point for normal alkane species is shown in Figure

3. From this plot, it is evident that nC can be used to model properties such

as the boiling point. However, the big disadvantage of this index is that it can

be used only for normal, i.e. straight chain, species. All isomers having a given

number of carbon atoms will have the same value of the nC index. This implies

that t = 1 in equation (2) and that the mean isomer*degeneracy, fil will always

be equal to the number of isomers. The range of applicability ofn C is thus strictly

limited.

To overcome the limitations of the carbon number index, increasingly vigorous

campaigns have been mounted over the past decade to invent indices which are

not only capable of effectively characterizing all the alkane isomers but which

can provide a near unique representation of all graphs of chemical interest.

Although over one hundred indices have been put forward to date, including a

large number of information-theoretical indices and even one superindex (a

summation of other indices), none has been demonstrated to be unique. Many

of these indices have hardly been investigated at all since their postulation, and

much work remains to be done in examining their behavior as molecular descriptors

and in determining their degree of correlation with other indices [5]. Only a

handful of topological indices have been widely used in chemistry for correlation'l

studies involving the physicochemical and other properties of molecular species.

-P . . . .~~. ° . . ... .. . . . . .. .. .
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These indices we now discuss in some detail below. Before doing so, we present

in Table 1 a listing of the M values [6] for the indices we consider.

The Wiener Topological Index

The first attempt to develop an index which could characterize molecular

branching can be traced back to the work of Wiener [14,15] in 1947. One of the

graph-theoretical parameters he put forward, originally described as the path

number and nowadays referred to as the Wiener index, was intended to reflect

the branching pattern in aikane species. Wiener defined his index as the sum

of the chemical bonds existing between all pairs of carbon atoms in the molecule

under consideration. The index was later shown by Hosoya [16] to be equivalent

to one half the sum of the entries in the distance matrix of the graph of the

molecule. In symbols, the Wiener index can thus be defined as follows:

W(G) = . (3)

where A~ represents the !jth entry in the distance matrix of the graph G. The

mathematical properties of this index have been investigated by Plesnik [171,

and its applications to chemistry have been discussed by Rouvray [18].

The Wiener index has been used to model a wide range of the physicochemical

properties of alkane species. Wiener himself [14,151 employed this and other

indices for biparametric correlations with a number of properties, including the

boiling point and various thermodynamic parameters, and obtained curves similar

to that in Figure 2. The early work was followed by Stiel and Thodos [19] who

used W(G) to predict critical constants; Rouvray and Crafford [20] who correlated

properties such as density, viscosity and surface tension; and by Papazova et
.

a--a--.
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al. [21] and Bonchev et al. [22] who correlated chromatographic retention times.

In all cases linear regression analysis yielded high correlation coefficients; in

the latter work [22], the correlation coefficient exceeded 0.999. The index has

also been used in the prediction of antibacterial activity [23]. In general, the

correlations obtained are found to be good whenever molecular size rather than

shape is the factor of prime importance. However, when shape is the decisive

factor, the shortcomings of the Wiener index are clearly revealed. In a plot

of W(G) versus boiling point for the 75 isomeric decanes, for instance, we found

a very wide scatter in the points, as evidenced in Figure 3. The correlation

coefficient for this particular scatter plot was only 0.0035. This finding accords

with the results of Motoc and Balaban [24], who demonstrated that circa 90%

of the value of the index reflects molecular size.

Some of the greatest successes with the Wiener index have been achieved

for large systems. For instance, Rouvray and Pandey [251 have shown how the

Wiener index can be used to gain valuable information on the mean configuration

adopted by long chain alkane molecules at their boiling point. Using the concept

of fractal dimensionality on such molecules, they proved that the ratios bl/bx

(1 < x I nC ) of the slopes of logarithmic scale plots of W(G) versus boiling point

(see Figure 4) tend to the limiting value of 0.6 for normal alkanes of infinite

length. As may be seen from Figure 5, this limit appears to be approached in

practice. It is possible to estimate the mean configuration of alkane molecules

from appropriate slope ratios in Figure -. Another use of W(G), also yielding

information on long chain alkane and other polymeric species was advanced by

Mekenyan et al. [26]. Here the basic idea was to normalize W(G) to give it a

finite value for an infinite chain of monomeric units. Values of W(G) for some

of the various monomeric units considered are listed in Tatle 2. Substitution

of the normalized W(G) value into the corresponding regression equation afforded

. - -. - - %, % " ". . . . • .- - . ° • - o . ,, ,i ; ." ° - - , ,° o . o . - °"-'. " " . - . " . " ° -°" ° ' " - "--. "%" -. " " " 
°
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good estimates of properties of the infinite chain, e.g. its melting point and

refractive index. A third major role for W(G) is in the modeling of solid sate

phenomena. The favored vacancy positions in crystallite lattices, for instance,

can be ascertained by calculating differences in W(G) for the structure in question

and a reference structure. Minimization of these differences leads to the structure

actually adopted. Trends in both the ir-electron and LOMO energies can be

modeled in this way for different lattices. The method has been applied to the

study of vacancy migrations along preferred diffusion paths (27], the optimum

positions in lattices of double and triple vacancies [28], the optimal positioning

of defect atoms in lattices [291, and modeling of crystal growth processes [30].

The Hosoya Topological Index

After the pioneering work of Wiener, a major step forward was taken in 1971

when Hosoya proposd a new topological index [16]. The index is defined by the

equation:

[n/21

Z(G' I p(G,k) , (4)
k=O

where p(G,k) is the number of ways in which k disconnected K 2 graphs can be

imbedded in C as subgraphs, and [n/21 represents the maximal value assumed

by the integer k. From this definition, it follows that p(G,O) will be unity, p(G,1)

represents the number of edges in C, and that p(G,n/2) is the number of 1-factors

(Kekul, structures) in G. The Hosoya index is closely related to several other

graph invariants, especially polynomials. For instance, the values adopted by

the index for path graphs form members of the Fibonacci series while the values

for monocyles form members of the Lucas series. Moreover, Z(G) is associated

- p... ~~~- * SFP *P ~
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with the characteristic polynomial, P(x), of a given graph C. In the case of tree

*graphs, the relationship assumes the form [16):

[n/2]
PT = (-1). p(T,k)x " 2 k 

, (5)

k=O

where PT(x) is the characteristic polynomial for a tree graph, T; for cyclic graphs

additional terms are added to equation (5). It may also be noted that the largest

eigenvalue of PT(X) is intimately related to the extent of branching in T (31].

Numerous other mathematical relationships have been established by Hosoya

and his associates [32-341.

The Hosoya index has found applications in a variety of different physical

and chemical settings [35]. Like many other topological indices, the index has

been used to model the physicochemical properties of hydrocarbon species, such

as the boiling point [5,16]. Unlike most other indices, however, a number of

empirical rules have been put forward [361 which prescribe the extent of lowering

of the boiling point in various isomeric species. Thus, it was established that

the lowering of the boiling point of alkanes due to monomethyl or geminal-dimethyl

substitution alternates as the site of substitution moves in from the end of the

main chain. Furthermore, if two substituents are far removed from each other,

the lowering effect caused by both will be additive, though this will not be the

case when the substituents are close. Gutman [371 has shown that Z(G) is

particularly suitable for modeling alternations in boiling point in substituted

alkane species. For instance, the alternation in monomethyl substituted heptanes,

octanes and nonanes are well modeled by Z(G) whereas other indices, such as

the Wiener index, are not capable of reflecting this behavior (see Figure 6). Z(G)

has also been shown [381 to correlate in a linear fashion with the absolute entropy

of alkanes species, though the correlation again becomes less reliable the greater

F, ., -p, p ,* -. . . .. ..... .... .- " " " . l~- mm
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the degree of steric overcrowding in the molecule. The interesting observation

was made that log Z(G) values model well both the diminution of the rotational

degree of freedom of a molecule with increasing branching and the decrease

in the partition function which arises from overcrowed conformations.

Additionally, the index Z(G) has been employed in the study of dimer statistics

[391, in the coding and identification of chemical graphs [401, and in the prediction

of the iT-electron structure of unsaturated hydrocarbon species [411.

The Topological Indices of Randid

Following the Hosoya index, the next major topological index to be proposed

was that of Randi6 [421. This index, which is nowadays widely referred to as

the molecular connectivity index, is the only index to have had two entire books

[43,441 devoted to it. The index has the symbol x and is as widely known in the

biological sciences as in the physical sciences because of its very widespread

application. In its original form, the index was defined in the following way:

X(G) = X (pip T' (6)
edges '

where the Pi and pi represent the degrees of the adjacent pair of vertices i and

.in C. The index was generalized into a series of indices [451 in which summations

were made over subgraphs of G other than edges; for the types of subgraph used

for this purpose, see Figure 7. In its most general form, X(G) is defined by the

equation:

a h  h+1

x -( II (Pi)k' , (7)
-.. . .k=1 i=1 .-
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where h is the number of edges in the summation subgraph used, r is the type

of subgraph used, ah is the number of subgraphs of type r having h edges, and

the index k extends over all theah subgraphs.

We shall focus here only upon the applications of molecular connectivity

indices to the modeling of the physicochemical properties of molecular species;

readers interested in applications in the biological sphere are referred to

appropriate review articles [46,471. indices have been employed in correlations

with a large number of physicochemical parameters; examples of such correlations

are collated in Table 3. An illustration of the correlation of 1X (h=l) with the

n-octanol/water partition coefficient is presented in Figure 8 for various

hydrocarbon and other species. This particular correlation is of significance

because the partition coefficient is well-known [471 to correlate closely with

many biophysical parameters. Moreover, the index is at least as effective a

tool as experimentally determined parameters in such studies [481. It has been

demonstrated [241 that roughly 90% of the numerical value of 1X reflects the

size of a molecule. With only 10% of the value characterizing molecular shape,

the generally good correlations obtained with the properties of branched species

indicate the overriding importance of the size factor. In the plot of 1X versus

boiling point for the 75 isomeric decanes, shown in Figure 9, the correlation

coefficient for linear regression is marginally better than that found for

the Wiener index (0.3295 as against 0.0035). It is evident therefore that in general

1X correlates only poorly with the branching structure of alkane species.

A variety of other studies have provided much corroborative evidence.

Altenburg has shown [49], for example, that 1X is closely related to the mean

square radius of a molecule, 1 2(G), at least in alkane species. For a given radius,

1× grows as the sum of the degrees of the edges in G (one of the so-called Platt

numbers [501) whereas for a given Platt number a monotonic relationship exists

• " ." " ".-.- ,". "" " .' -.''. """ " ,, . '.''''" ."" "'- " . % "" "" % /' •' '*' ''" ',, " ' ", ; 'P " " " ' I"
•.,.. .-..." . .... .-.; .:.:,: -? ,-, -," - .- , , t, '

'
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between 1X and the radius. Recently, Trinajstid [511 demonstrated that R2(()

for alkanes is related to the Wiener index, W(G), by the equation:

R2(G) = W(G)/n 2 . (8)

Furthermore, Hall and Kier [52] found excellent correlations of the various X

indices they studied with molecular volume for various chemical species, including

alcohols, ethers and ketones. It was suggested by Edward [531 that the X indices

correlate well with the properties of alkanes because the indices correlate with

both the numbers and types of different carbon atoms in the molecule and the

mole fraction of gauche conformations of the molecule. For normal alkanes,

for instance, he derived the relationship:

X= 0.457 Pp + 0.5 Ds, (9)

where pp and as represent respectively the numbers of primary and secondary

carbon atoms in the molecule. He concluded that theX indices encode information

in varying proportions about both the nature and number of the carbon atoms

and the degree of folding of the molecule (ZI) in alkane species. Kier and Hall

(44] have shown that whereas OX and 2X increase with the extent of branching

in tree graphs 1X decreases; the way in which higher X terms reflect molecular

branching is at present not well understood.

In order to improve upon the discriminating power of molecular connectivity

indices and to reduce their mean isomer degeneracy (see Table 1), Randid put

forward a modified version of his index known as the molecular identification

number (54]. The newer index was based on a count of appropriately weighted

paths in C, though the weighting factor used was the same as that for the X indices.

". • o .9. . . .=. ° - - .* •.-. *'• . • .- .. o- N . " ° ** *. * % * = *- o -. o . . .°
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In mathematical formalism the index may be defined as:

z
ID(G) = n + P(ei), (10)

paths i=1 -
ip

where P(ej) represents the weighted path j, which may be expressed in terms

of its edges as (el, 2, ..., e_) where z = 0. The index is known [551 not to provide

a unique characterization of molecular structure. For the alkane isomers the

first single degeneracy occurs in 15-carbon-atom species; by the time

20-carbon-atom species are reached there are 88 duplicate values of the index

for a total of 366,319 isomeric species (551. Because of its very low mean isomer

degeneracy, however, the index appears suited to offer a good characterization

of at least the alkanes. To date, only scant use has been made of the index for

correlational purposes [54,561. Much work remains to be done using this index, '

for ID(G) clearly merits further detailed study.

The Topological Indices of Balaban

Two topological indices designed specifically to model the branching in alkane

and other species have recently been described by Balaban. The first of these,

known as the centric index (571, represents a summation of terms derived from

a stepwise pruning of the chemical graph under consideration. This index is defined

only for tree graphs. The terms used in the index are obtained by squaring the

number of leaves, i.e. vertices of degree one, pruned away at each step in the

pruning procedure. The summation of these terms yields the index:

2
C(G) = T 6 i , (11)

steps

-.- ..-. *-" -,.,,.
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where 6i represents the number of leaves pruned away at the ith step. To

eliminate size effects, Balaban [57] proposed a normalization of C(G) by

subtracting from it the value of the index for the path graph on n vertices. This

gave a normalized index C'(G) of the form:

C'(G) = [ i 2n + (-10), (12)
steps

where the initial factor of I has been employed to ensure that the lower bound

for the path graph will equal zero.

The normalized index C'(G) was chosen by Balaban and Motoc [581 to model

the octane numbers of various alkane species commonly used as fuels. The

efficiency of such molecules in this context is well-known to be critically

dependent upon their extent of branching. In general, the more branched an

alkane molecule is, the less likely it will be to self-ignite or 'knock' upon sudden

compression in air in an internal combustion engine. Correlating alkane octane

*numbers against their C'(G) values thus provides a sensitive test of the reliability

of the index in the characterization of molecular branching. For all the heptane

and octane isomers, linear regression yielded a correlation coefficient of 0.945.

This was the best correlation obtained from the various indices used for the

purpose, indicating that C'(G) does indeed reflect the extent of branching present

in these molecular species. Since the size factor is effectively eliminated by

the normalization procedure, relatively low correlations with the indices Z(G)

and W(G) are to be expected; the respective correlation coefficients for alkane

species in the range 4 < n < 8 are 0.07 and 0.21. Since largely size-dependent

parameters, such as boiling point, do not correlate with shape-dependent

parameters, such as the octane number, it is hardly surprising that indices used

to reflect size will correlate poorly here.

~ ~ ~ d
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The second topological index of Balaban is based on the distance matrix of

the graph G and is known as the averaged distance sum connectivity index [59].

For tree graphs, the index may be written as:

JG) = (13)
a e es O

where ae is the number of edges in the tree, and i and sj represent respectively

" the sums of the ith and ith row of the distance matrix of the tree. The index

attempts t6 reflect both molecular size and the extent of branching present,

and increases with both of these parameters. Linear correlation of J(G) with

the octane number of various alkane molecules (4 < n < 8) afforded a correlation

coefficient of 0.92, very close to that for the C(C) index [601. Moreover, Hanson

and Rouvray [61] have demonstrated that J(G) alone, and also as a product with

the hydrogen deficiency number, correlates well (0.951) with the threshold soot

index for a wide assortment of hydrocarbon species. Correlation of J(G) for

the 75 isomeric decanes, however, yielded a correlation coefficient of only C.0031

(see Figure 10) -- on a par with that for lx. Since the index is one of the more

discriminating currently available (see Table 1), it is certainly deserving of further

study, and perhaps also extension to include paths of length greater than one,

in analogy to the Randid molecular connectivity index [451.

Conclusion

Just over 40 different topological indices have been documented in the chemical

literature to date, and, for the most part, these have been put forward to model

the physicochemical properties of hydrocarbon molecules. In addition to these

indices, some 70 information-theoretical indices [62] have been advanced for

!I
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the same purpose. Many of these descriptive indices have not been examined

in any detail; most have been simply advocated without any ensuing follow-up.

All of the indices have, however, been collated recently and closed formulas

derived [63] enabling their values to be calculated for graphs in the form of paths

and monocycles. Only a handful of the topological indices presently available

have thus been employed extensively in practice, the most frequently used index

being the Randi: molecular connectivity index [42]. Attempts to extend the

usefulness of topological indices by allowing for heteroatoms, i.e. atoms other

than carbon, have been made by Kier and Hall [43,44], Lall and Srivastava [64],

and Barysz et al. [65], though atomic charge is difficult to treat with purely

topological models. More effective ways of treating heteroatoms will probably

have to be developed in the future.

The relatively small number of indices employed so far have proven themselves

capable of modeling a vast array of chemical phenomena, ranging from

thermodynamic properties to molecular configurations. The indices thus seem

to be modeling in a reliable way factors of fundamental importance at the

molecular level. We are proposing here that the two factors in question are

the molecular size and shape. The former may be readily calculated from the

van der Waals' envelope [41 of the molecule under consideration; the latter is

much more problematical because of the current lack of general agreement on

the definition of extent of branching in molecular species (3]. However, the

relative importance of the shape factor can be determined by taking a simple

difference, if size and shape are the only factors considered. The outcome of

such investigations is that all topological indices (except the carbon number

index) incorporate to varying degrees both the shape and size factors. Thus,

whereas some indices emphasize predominantly the shape of a molecule, e.g.

the Balaban centric index (571, others reflect mainly its size, e.g. the Wiener
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index (14].

Corroborative evidence exists that topological indices yield good correlations

because they model the two important parameters which are determinants of

physicochemical properties. In an attempt to predict the properties of 114 diverse

liquid compounds, Cramer (66,671 concluded that there were only two types of

intermolecular interaction which were significant in determining observable

macromolecular properties. These were what he termed the bulk and the

bulk-corrected cohesiveness of a molecule. In our terms, the bulk corresponds

directly to what we have called the molecular size; the cohesiveness appears

to be related to electrostatic interactions occurring and will certainly be dependent

upon molecular shape. Cramer's observations [67] support the contention that

any property which depends primarily on nonspecific and noncovalent molecular

interactions will display a similar interaction mechanism. Such properties can

therefore be predicted from the molecular structure alone and are not an artifact

of the factor analysis. Nonspecific biological responses [46], i.e. those that are

not influenced significantly by receptor shape, are also included here and may

thus also be predicted by means of topological indices (47]. It is intriguing that

manifold physicochemical and other properties can be modeled so effectively

using no more than these comparatively simple parameters of molecular size

and shape.
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Captions for Figures and Tables

Figure 1. Examples of nonisomorphic graph pairs having the same eigenvalue

spectrum, the same Wiener index, the same Randi6 1x molecular connectivity index,

and the same Balaban J averaged distance sum connectivity index.

Figure 2. Plot of the carbon number index, .c, versus boiling point for the first

forty normal alkanes (1 < n < 40).

Figure 3. Scatter plot of the boiling point versus Wiener index for the 75 isomeric

decane species (C 10 H2 2 ).

Figure 4. Plot on logarithmic scales of the Wiener index versus boiling point for

the first forty normal alkanes (1 < n < 40) showing changing slope.

Figure 5. Plot of the slope ratios in Figure 6 versus an averaged carbon number

for successive sets of nine points.

Figure 6. Plot of boiling point versus the Randi6 molecular connectivity index,

1X, the Wiener index, W, and the Hosoya index, Z, for the monomethyl substitute

tridecanes. Based on ref. (381.

Figure 7. Illustration of the types of subgraph used in calculating the higher order

(h > 3) Randif molecular connectivity indices, h X.

Figure 8. Semilogarithmic plot of n-octanol/water partition coefficient versus

the Randi6 molecular connectivity index, 1 X, for various organic species. Based

on W.J. Murray, L.H. Hall, and L.B. Kir, J. Pharm. Scis 64, 1978 (1975).



Figure 9. Scatter plot of the boiling point versus the Randi6 molecular connectivity

index, 1 x, for the 75 isomeric decane species (CIOH 2 2 ).

Figure 10. Scatter plot of the boiling point versus the Balaban averaged distance

sum connectivity index, J, for the 75 isomeric decane species (C10 H2 2 ).

Table 1. Listing of the mean isomeric degeneracy values, rf, for alkane tree isomers

in the range 2 < n < 10 for severn different topological indices.

Table 2. Closed formulas for the value of the Wiener index for various monomeric

units which can form polymeric chains.

Table 3. Examples of linear regression equations obtained from correlations of

various physicochemical parameters versus the Randid molecular connectivity index,

lx, and valence corrected index, lxv, for different organic species.
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